skip to main content


Search for: All records

Creators/Authors contains: "Peterson, A. Townsend"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2025
  2. COVID-19 is a respiratory disease caused by a recently discovered, novel coronavirus, SARS-COV-2. The disease has led to over 81 million confirmed cases of COVID-19, with close to two million deaths. In the current social climate, the risk of COVID-19 infection is driven by individual and public perception of risk and sentiments. A number of factors influences public perception, including an individual’s belief system, prior knowledge about a disease and information about a disease. In this article, we develop a model for COVID-19 using a system of ordinary differential equations following the natural history of the infection. The model uniquely incorporates social behavioral aspects such as quarantine and quarantine violation. The model is further driven by people’s sentiments (positive and negative) which accounts for the influence of disinformation. People’s sentiments were obtained by parsing through and analyzing COVID-19 related tweets from Twitter, a social media platform across six countries. Our results show that our model incorporating public sentiments is able to capture the trend in the trajectory of the epidemic curve of the reported cases. Furthermore, our results show that positive public sentiments reduce disease burden in the community. Our results also show that quarantine violation and early discharge of the infected population amplifies the disease burden on the community. Hence, it is important to account for public sentiment and individual social behavior in epidemic models developed to study diseases like COVID-19. 
    more » « less
  3. Abstract Background The COVID-19 pandemic has caused more than 25 million cases and 800 thousand deaths worldwide to date. In early days of the pandemic, neither vaccines nor therapeutic drugs were available for this novel coronavirus. All measures to prevent the spread of COVID-19 are thus based on reducing contact between infected and susceptible individuals. Most of these measures such as quarantine and self-isolation require voluntary compliance by the population. However, humans may act in their (perceived) self-interest only. Methods We construct a mathematical model of COVID-19 transmission with quarantine and hospitalization coupled with a dynamic game model of adaptive human behavior. Susceptible and infected individuals adopt various behavioral strategies based on perceived prevalence and burden of the disease and sensitivity to isolation measures, and they evolve their strategies using a social learning algorithm (imitation dynamics). Results This results in complex interplay between the epidemiological model, which affects success of different strategies, and the game-theoretic behavioral model, which in turn affects the spread of the disease. We found that the second wave of the pandemic, which has been observed in the US, can be attributed to rational behavior of susceptible individuals, and that multiple waves of the pandemic are possible if the rate of social learning of infected individuals is sufficiently high. Conclusions To reduce the burden of the disease on the society, it is necessary to incentivize such altruistic behavior by infected individuals as voluntary self-isolation. 
    more » « less
  4. Ecological niches are increasingly appreciated as a long-term stable constraint on the geographic and temporal distributions of species, including species involved in disease transmission cycles (pathogens, vectors, hosts). Although considerable research effort has used correlative methodologies for characterizing niches, sampling effort (and the biases that this effort may or may not carry with it) considerations have generally not been incorporated explicitly into ecological niche modeling. In some cases, however, the sampling effort can be characterized explicitly, such as when hosts are tested for pathogens, as well as comparable situations such as when traps are deployed to capture particular species, etc. Here, we present simple methods for testing the hypothesis that non-randomness in occurrence or detection exists with respect to environmental dimensions (= a detectable signal of ecological niche); i.e., whether a pathogen occurs nonrandomly with respect to environment, given the occurrence and sampling of its host. We have implemented a set of R functions that presents an overall test for nonrandom occurrence with respect to a set of environmental dimensions, and, a posteriori, a set of exploratory tests that identify in which dimension(s) and in which direction or form the nonrandom occurrence is manifested. Our tools correctly detected signals of niche in most of our example cases. Although such signal may not be detectable in cases in which the niche of interest is broader than the universe sampled, such a possibility was correctly discarded in our analyses, preventing further interpretations. This kind of testing can constitute an initial step in a process that would conclude with development of a more typical ecological niche model. The particular advantage of the analyses proposed is that they consider the biases involved in sampling, testing, and reporting, in the context of nonrandom occurrence with respect to environment before proceeding to inferential and predictive steps. 
    more » « less
  5. Amblyomma maculatum (Gulf Coast tick), and Dermacentor andersoni (Rocky Mountain wood tick) are two North American ticks that transmit spotted fevers associated Rickettsia . Amblyomma maculatum transmits Rickettsia parkeri and Francisella tularensis , while D. andersoni transmits R. rickettsii , Anaplasma marginale , Coltivirus (Colorado tick fever virus), and F. tularensis . Increases in temperature causes mild winters and more extreme dry periods during summers, which will affect tick populations in unknown ways. Here, we used ecological niche modeling (ENM) to assess the potential geographic distributions of these two medically important vector species in North America under current condition and then transfer those models to the future under different future climate scenarios with special interest in highlighting new potential expansion areas. Current model predictions for A. maculatum showed suitable areas across the southern and Midwest United States, and east coast, western and southern Mexico. For D. andersoni , our models showed broad suitable areas across northwestern United States. New potential for range expansions was anticipated for both tick species northward in response to climate change, extending across the Midwest and New England for A. maculatum , and still farther north into Canada for D. andersoni . 
    more » « less
  6. Aboelhadid, Shawky M (Ed.)
    The COVID-19 pandemic has caused over 500 million cases and over six million deaths globally. From these numbers, over 12 million cases and over 250 thousand deaths have occurred on the African continent as of May 2022. Prevention and surveillance remains the cornerstone of interventions to halt the further spread of COVID-19. Google Health Trends (GHT), a free Internet tool, may be valuable to help anticipate outbreaks, identify disease hotspots, or understand the patterns of disease surveillance. We collected COVID-19 case and death incidence for 54 African countries and obtained averages for four, five-month study periods in 2020–2021. Average case and death incidences were calculated during these four time periods to measure disease severity. We used GHT to characterize COVID-19 incidence across Africa, collecting numbers of searches from GHT related to COVID-19 using four terms: ‘coronavirus’, ‘coronavirus symptoms’, ‘COVID19’, and ‘pandemic’. The terms were related to weekly COVID-19 case incidences for the entire study period via multiple linear and weighted linear regression analyses. We also assembled 72 variables assessing Internet accessibility, demographics, economics, health, and others, for each country, to summarize potential mechanisms linking GHT searches and COVID-19 incidence. COVID-19 burden in Africa increased steadily during the study period. Important increases for COVID-19 death incidence were observed for Seychelles and Tunisia. Our study demonstrated a weak correlation between GHT and COVID-19 incidence for most African countries. Several variables seemed useful in explaining the pattern of GHT statistics and their relationship to COVID-19 including: log of average weekly cases, log of cumulative total deaths, and log of fixed total number of broadband subscriptions in a country. Apparently, GHT may best be used for surveillance of diseases that are diagnosed more consistently. Overall, GHT-based surveillance showed little applicability in the studied countries. GHT for an ongoing epidemic might be useful in specific situations, such as when countries have significant levels of infection with low variability. Future studies might assess the algorithm in different epidemic contexts. 
    more » « less
  7. null (Ed.)